Unbounded Bergman Projections on Weighted Spaces with Respect to Exponential Weights

نویسندگان

چکیده

There are recent results concerning the boundedness and also unboundedness of Bergman projections on weighted spaces unit disc in special cases rapidly decreasing weights, i.e. “large” spaces. The aim our paper is to show that largely exceptional: general unbounded. In addition we give a new, more functional analytic proof for known central case which enables us transfer harmonic

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Bergman projections on the Hartogs triangle: exponential decay

We study weighted Bergman projections on the Hartogs triangle in C. We show that projections corresponding to exponentially vanishing weights have degenerate L mapping properties.

متن کامل

Bergman projections on weighted Fock spaces in several complex variables

Let ϕ be a real-valued plurisubharmonic function on [Formula: see text] whose complex Hessian has uniformly comparable eigenvalues, and let [Formula: see text] be the Fock space induced by ϕ. In this paper, we conclude that the Bergman projection is bounded from the pth Lebesgue space [Formula: see text] to [Formula: see text] for [Formula: see text]. As a remark, we claim that Bergman projecti...

متن کامل

Operators on weighted Bergman spaces

Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...

متن کامل

Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces

In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.

متن کامل

BOUNDEDNESS OF THE BERGMAN PROJECTIONS ON Lp SPACES WITH RADIAL WEIGHTS

D |f(z)|dμ(z) )︀1/p < ∞ and by La(D, dμ) (or La(D) for short) the subspace of the space L(D) comprising the functions that are analytic on D. If p = 2, La(D) is a Hilbert subspace of L2(D) and it is called Bergman space. Let P denote the orthogonal projector of L2(D) on La(D) (Bergman projection). Let {δn}n=0 be defined by δn = (︀ 2π ∫︀ 1 0 r 2n+1w(r) dr )︀1/2 . Then, the sequence of functions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Integral Equations and Operator Theory

سال: 2021

ISSN: ['0378-620X', '1420-8989']

DOI: https://doi.org/10.1007/s00020-021-02680-2